OPTIMIZATION BASED IMAGE REGISTRATION IN THE PRESENCE OF MOVING
OBJECTS

F. Karimi Nejadasl', B. G. H. Gorte', Serge P. Hoogendoorn, and [M. Snellen!

Mnstitute of Earth Observation and Space System
Delft University of Technology
Kluyverweg 1, 2629 HS, Delft, The Netherlands
Tel: +31 1527 88337, Fax: +31 15 27 82348
F.KarimiNejadasl @tudelft.nl,B.G.H.Gorte @tudelft.nl
2Transport and planning section
Delft University of Technology
Stevinweg 1, 2628 CN, Delft, The Netherlands
S.P.Hoogendoorn @tudelft.nl

KEY WORDS: Registration, Optimization, Differential Evolution, Nelder-Mead, 3D Euclidean

ABSTRACT:

To increase robustness in registration of image sequences, we investigate a featureless method. This paper formulates the registration
problem as an optimization of an energy function between a reference image and a transformed of target image. A result parameters
are estimated using a global optimizer, Differential Evolution, followed by a local optimizer, Nelder-Mead. Our experiments show that
the proposed algorithm perform, robustly in a large variety of image content from the road almost empty surrounding to more cluttered

one and from simple road shape to more complex.

1 INTRODUCTION

This paper describes an algorithm to co-register images in an
image sequence that is recorded from a non-stable platform, in
this case a helicopter hovering above a highway. Such image
sequences are used to collect statistics concerning the driver be-
havior in busy (nearly congested) traffic. Typically, we record
highway stretches with a length of 300-500m during one hour or
more. We use a b/w camera with 1300%1030 pixels, which gives
a ground resolution of approx. 25-40 cm, at a frame rate of 10
fps. Because of the large data volumes, we aim at fully automatic
image analysis, which means that for each vehicle in the scene we
record the position on the highway as a function of time (in 0.1s
increments). The accuracy and precision of the recordings have to
be such that reliable estimates can be derived for the speeds, ac-
celerations/decelerations and reaction times (when does a driver
start to brake after its predecessor does?).

An important step is the co-registration of all images in the se-
quence. Turbulence generated by a helicopter that is hovering at
one position causes random movements leading to severe deterio-
ration of platform stability. The pilot has the difficult task to pre-
vent the helicopter from (slowly) drifting away from the wanted
position, and she/he definitely cannot control random movements,
that cause misalignments of images in the sequence.

From a typical flying height in the order of 400m and with about
55 degree viewing angle, consecutive images (recorded at 0.1s
intervals) show misalignments of up to 3m.

Misalignment is caused by the combined effects of helicopter
translations (in z, y and z directions) and rotations (around the
z, y and z axes). Using a Gyro stabilizer on a camera dampens
out a rotor or motor vibration in turbulence caused by helicopter
during a hovering time. However, it cannot provide the stabilized
image sequence over a long time, for example half an hour, due to
accumulation of movements with increasing time. Moreover, the
Gyro stabilizer cannot prevent effects of slower rotation or (any)

translation. Therefore we opted for a software post-processing
solution to obtain fully automatic co-registration.

In this solution the image is processed frame by frame, starting
from a reference frame, which (for simplicity) we will assume to
be frame 1 in the sequence. Assuming that frames 2 - - - n are al-
ready registered to frame 1, which means that the transformation
T;,1 between frame ¢ and frame 1 is known, we process frame
¢ + 1 in three steps as follows:

1. compute 751 ;, the transformation between image intensity
I;+1 and image intensity I;

2. compute E;y11 = T5,1Ti+1,:, the estimate transformation
between ;41 and I;

3. used E;y1,1 as the initial value for computing 75411

This strategy prevents registration errors to accumulate. Match-
ing consecutive images (step 1) is easier (i.e. less error-prone)
than matching arbitrary images, since the misalignment is lim-
ited. In step 3, this problem is avoided by providing an accurate
approximate value to the matching process. The first step is still
the most demanding one and is the main focus of the paper: how
to register consecutive images from a sequence.

Usually, the transformation between two images is calculated based
on common features, which have to be identified first by using,
for example, an interest operator such as the Forstner operator or
SIFT (Lowe, 2004).

In our case there are moving objects in the scene that confuse
this process; the common features only should be selected from
fixed objects. Automatic techniques require a good distribution of
features and moreover, classification of moving and fixed objects
(Kang et al., 2005), (Pless et al., 2000). Having a good feature
distribution is highly dependent on image content.
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In this paper, we are aiming at an image registration independent
of the image content. In order to find the transformation parame-
ters, we use all the pixels from the image. The transformation that
minimizes the difference between the transformed image and the
reference image, which is expressed in a so-called energy func-
tion, is considered to provide the best transformation. Hereby it
is implicitly assumed to have a limited number of moving objects
compared to the total number of image pixels.

The rest of the paper is organized as follows: The image regis-
tration method with two different transformation models are de-
scribed in Section 2. The details of searching algorithms used
for parameter estimation and scaling parameters are explained in
Section 3. In Section |4, we report experimental results on four
different dataset. Conclusions and recommendations are given in
Section 5

2 IMAGE REGISTRATION

Movement of the helicopter causes movement of camera mounted
below it. Therefore reconstructing the second image from the first
image is possible by knowing the movement of camera and the
distance of an object in a scene to a camera. However, we neglect
the effect of relief.

With wrong transformation parameters, the transformed image is
not the same as the first one. The inequality is visualized by dif-
ferences between the first image and the transform image. The
Mean Square Error (MSE), is used to express the misalignment
between the transformed image and the reference image. The
optimized transformation parameters are those that provide the
maximum agreement between the transformed image and the ref-
erence one.

The equality condition is disturbed by moving objects and by
brightness variation.

We assume that the percentage of moving objects is very small
relative to the total number of pixels, and that severe local bright-
ness variation is also not existing. Consequently, the transfor-
mation parameters are the ones which the difference between the
transformed image and the reference image is minimum. As men-
tioned earlier, the difference is expressed with the MSE. In the
other word, the transformation parameters are obtained by min-
imization of the MSE between the transformed image and the
reference image.

The detail of the transformation model comes in the following
section. The energy function and parameter space are discussed
in the section 2.2l

2.1 Transformation Model

We have tested two transformation models: the projective without
shearing and different scale parameters, and the 3D Euclidean
model (Hartley and Zisserman, 2004).

This projective model without shearing and different scale para-
meters is expressed as follows:

scos(0)z2 + ssin(0)y2 + t1
V122 + v2y2 + 1

—ssin(0)z2 + scos(0)y2 + t1
v1T2 + v2y2 + 1

1 =

where s, 0, t1, t2, vi, and vo are respectively scale, rotation,
translational and special projective parameters. x; and y; are

image coordinates of the first image and x2 and y» are for the
second image.

The camera motion caused by helicopter is described by the 3D
Euclidean transformation model. The camera motion is calcu-
lated in the camera coordinate system.

The relation between two camera situations is expressed as follows:

Xcaml - [R|T]Xcam2 (1)

where R, T Xecam1, and Xeqma, are respectively the 3 x 3 rota-
tion matrix, the 3 x 1 translation vector, the camera coordinate for
the first situation and the homogenous camera coordinate for the
second situation. These parameters are represent by their para-
metric values as follows:
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By replacing them in Equation 1, we have:
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The final relation between two camera situations is:
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The data is measured in the image coordinate system. Therefore
we need to convert the camera to image coordinates. The relation
between two coordinate systems requires internal camera para-
meters which are calculated in the camera calibration process.
We calibrated the camera using a calibration toolbox (Bouguet,
2007) to remove lens distortion and to calculate the calibration
matrix, K, for coordinate conversion.
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The conversion relation is formulated as: Xeam = K~ ' Xim

where Xiw = [ X YV Z ]2 = £,y = L. (z,y)

and (X, Y, Z) are respectively image coordinate in pixel unit and
camera coordinate in metric unit.

2 3 2 3
X f1 (sz - przm)
4Y 5 =4 o (Yin —pyZim) O ©)
Z cam Zim
where fi = PLSI and fo = % are focal length in pixel

unit. F is focal length thus Zcgm ZF PS; and PS, are
respectively pixel size in = and y directions.

By dividing the left side of the equation 6/ by Z;,, the final rela-
tion between camera and image coordinates is obtained.

Xeam = PSg (33 - IHJ)
Yeam = PSy(y—py) )
an,m = F

In equation 7, P.S, and P.S, change the pixel unit to metric unit:
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The relation between two camera situations Equation 4/is refor-
mulated in the image coordinate using Equation [7:
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The final relation between two image coordinates is obtained by
dividing the first and the second formulas from Equation §/to the
the third one:
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Tx, Ty and Tz are in metric unit.

2.2 Energy Function and Parameter Space

In this section, we describe the energy function for an image-
content-free registration (no restrictions with regards to image
content). In order to find the transformation parameters, we use
all image pixels. We have assumed here to have a limited number
of moving objects compared to the total number of image pixels.

The energy function selected is:

> X< 7

F(p) = min a1 (y,x) —fi(y7:c)|2/N (10)
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with p being the vector containing the unknown transformation
parameters, six in our case. By minimizing the energy func-
tion, the transformation parameters are obtained. Where I;, I ﬂf )
and N are respectively the normalized reference image intensity,
the normalized transformed of the target image intensity and the
number of pixels in the common area after transformation. Com-
paring the normalized images removes the global brightness vari-
ation effect.

Applying the transformation matrix (7") results in geometrically
transformed coordinates of ¢ + 1th image, X; 1. With bilinear
interpolation, the ¢ 4+ 1th image is radiometrically transformed.
Mathematically the combined operation of the geometrical and
radiometrical transformations of the I, is:

Ify = Lip(T(p)iv1,iXign)

Bilinear interpolation changes the brightness values. However
the amount of change is limited to the intensity values of 3 X 3
neighboring pixels.

3 SEARCH ALGORITHM

Searching the whole parameter space for finding the optimum
value is com;&ationally very expensive. The complexity of Equa-
tion[10/is O( ~,_;.4 Mp(s)) Where the ny,(;y with is the number of
all possible values for each parameter, p(¢). One could imagine
the real number space, R, as the range of each parameter. How-
ever, not every combination of parameters is allowed.

Each parameter has a certain range beyond which the transformed
image is meaningless. Moreover, for each parameter there is a
sensitivity value such that within the sensitivity value the trans-
formed images are equal. Although calculating range and sensi-
tivity of parameters reduces the searching space, it is still huge.

Therefore, we have applied a global optimization technique. Here
Differential Evolution (DE) (Price et al., 2005) is used to find the
global optimum.

DE starts with an initial population of g randomly (McKay et
al., 1979) chosen parameter value combinations m. These m’s
are improved during successive generations of constant size g,
in the sense that a descendant replaces an m, becoming its suc-
cessor, if it has a lower energy. The distinctive feature of DE is
the way in which these descendants are created. Various ways
to generate new m’s exist, but here only the following procedure
is considered. At the start of generation &k the parameter vectors
my 1, -+, My 4 are given and for each of them a descendant is
created. To create a descendant dy, ;, a partner py; is constructed
as follows:

Pii = myj, + F(mgj, — myj;) an



With the three different m-vectors chosen at random from the
population and F' being a scalar multiplication factor between
0 and 1. The descendant dj ; of my ; results from applying
crossover to my,; and pg,; with crossover probability pc. A
higher value of pc leads (on the average) to more dimensions
of px,; being copied into my ;. Descendant di ; only replaces
my, ;, becoming its successor, if its energy is lower. The setting
parameters of DE are population size ¢, multiplication factor F/,
crossover probability pc and the number of generations NG. The
values chosen for the setting parameters are chosen according to
(Snellen and Simons, 2007).

The result of DE is not precise. We used a local optimizer to
converge to a more precise result. The Nelder-Mead downhill
simplex algorithm (NM) (Lagarias et al., 1998) is used as an local
optimizer. It does not require the calculation of derivatives.

Often, the result obtained from DE is good enough to use it as the
final result without using complementary NM method.

The range of the parameters is calculated for initializing DE method.

The result of DE is used as an initial value for NM method. To
speed up the process, we calculate the result in the scale space.
In the first step parameters are obtained by using DE in the low-
est image scale. Later on these parameters are used as an initial
values in NM method in the same image scale. The process con-
tinues for the higher image scale till the main image scale using
the scaled result of previous stage as for the initialization of NM
method. The discussion about which parameter should be scaled
and amount of scaling is presented in Section 3.1\

3.1 Scale Space

Each candidate of parameter combination is evaluated by an en-
ergy function, which requires image transformation. The image
transforming for full size images is time consuming. The trans-
formation and therefore the whole process is faster if we calcu-
lated the parameters in a scaled image. The parameters also need
to be scaled. In each transformation model, parameters are scaled
according to scaling the image coordinates in such a way to com-
pensate the coordinate scaling.

In projective equation is the lowest scale, n:

scos(0)x2/2" ! + ssin()y2 /2" + 1 /2771

27171 _
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t1, o are scaled down, v, vz are scaled up to 2" 1. The rest of
the parameters stays intact.

In the same way for 3D Euclidean model (Equations 9), K and
the transformation parameters are scaled down to 2"~ *. The ro-
tational parameters remaining the same.

We calculate the parameters using DE in the lowest scale. The
results are then used as an initial values in NM method in the
lowest scale. These parameters are scaled for the higher scale
and used as an initial value to initiating NM. The final result is
the one which is calculated for the main image scale.

4 RESULTS AND DISCUSSIONS

We used three levels of the image scale using gaussian filter with
3 x 3 windows, with one for mean and 0.5 for standard devia-
tion. In the third scale (smallest scale), DE is calculating the first

results using 100 number of generations, 16 population numbers,
crossover rate 0.55 and multiplication factor 0.6. The obtained
result is initializing the NM for more precise result. This result is
scaled for next NM calculation in higher scale till the main scale.
Only 50 times iteration for the third and the second levels and 10
for the main image scale is enough to get the final result. With
Matlab implementation, we got about 6 minutes for DE and 4
minutes for NM.

Figure is illustrated a minimum of population and its energy in
each generation. We run the program for two different runs which
is demonstrated by a black and red color. The results are stabi-
lized after about 100 frames. The correlation between parame-
ters are displayed in the right figure of Figure . The relation
between energy value and each parameters in the whole gener-
ation and population are demonstrated in Figure 2. Figure 3| is
the energy values for two parameters together. The energy values
are represented by colors. The blue color shows that the popula-
tion has become more stable. In the above-mentioned figures, we
used Apeldoorn images which will be visualized later and the 3D
Euclidean model.
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Figure 1: left: Minimum energy value of population is visualized
in each generation. right: Correlation between the parameters
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Figure 2: parameter value and its energy

The results are tested for four different image sequences: Klaver,
Apedoorn, lokseq, and Ouderijn. Klaver has less structural infor-
mation around the road. In contrast, Apeldoorn has more com-
plicated structure surrounding the road. Lokseq and Ouderijn are
selected as an opposite examples of simple and sophisticated road
shape. The result of our method is compared with corresponding
points that are identified manually. The parameters are estimated
using Levenberg-Marquardt algorithm (LM) for the following en-
ergy function:

F(p) = min  (X; = T(p)X2)* (12)
where X1, X2, and T are respectively first, second image coordi-
nates and transformation matrix. X and X for projective model
should be transformed to the image center.
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Figure 3: Two parameter values and their energy

The results are given in Tables |1} 12, 3, and 4] respectively for
Klaver, Apeldoorn, lokseq, and Ouderijn images. The first row
of each transformation model is assigned to our method and the
second one for the manual method. The 1 — 6" column shows
the parameters. 7*" and 8" are the energy value and amount of
moving pixels smaller than 5 pixels to the whole number of image
pixels of the results.

In 3D Euclidean model, first three parameters are rotational and
the last are translational parameters. In our projective model, the
parameters are ordered as scale, rotation, translation, and two pro-
jective parameters.

The values in the table are rounded to the precision of each pa-
rameter. We got better results in our method than in the manual
way in all the images. Lower quality of manual results is due to
inaccuracy in corresponding point selection because of slight im-
age burring. Finding corresponding points are more difficult in
Klaver and Apeldoorn images.

There is a small correlation between rotation around z axis and
translation in y direction and also for rotation around y axis and
translation in x direction (see right Figure 1) in 3D Euclidean
model which results in having different results for these parame-
ters in a approximate calculation. But this problem is not oc-
curring in accurate calculation. That is why the parameters from
manual and automatic methods in 3D Euclidean model are a little
bit different in the 2 — 5" parameters.

Figures 4,15, 16, and|7 are representing the potential of our method
in image registration. The first row, from left to right, is respec-
tively the first, second image and the difference between them.
The second row is the first and the transformed of the second im-
age with the results from our method using 3D Euclidean model
and their difference.

5 CONCLUSIONS

We have proposed an approach for automatic registration of con-
secutive images in an image sequence without using any feature.
The parameters have been estimated by optimizing MSE between
a reference image and a transformed target image. Our method
has shown robustness in different image sequences with various
contents. The images are precisely co-registered. This method
will be extended to registration of an entire image sequence. Al-
though in principle, this approach is able to tackle the large trans-
formation, but more subtle idea is required to reduce computation
cost. We will further study the possibility of using different en-
ergy functions such as correlation coefficient or more expensive

Figure 4: Klaver images: The first row, from left to right, is the
first, second and their difference images. The second row, from
left to right, is the first image and the transformed of the second
image based on the estimated parameters using our method and
their difference.
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Figure 5: Apeldoorn images: The first row, from left to right,
is the first, second and their difference images. The second row,
from left to right, is the first image and the transformed of the sec-
ond image based on the estimated parameters using our method
and their difference.

Figure 6: lokseq images: The first row, from left to right, is the
first, second and their difference images. The second row, from
left to right, is the first image and the transformed of the second
image based on the estimated parameters using our method and
their difference.

ones such as mutual information, and investigate their behavior
and limitation. In addition, the further study will be on possi-
bility of using randomly selected image pixels instead of entire
image pixels to speeding up the process.
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Figure 7: Ouderijn images: The first row, from left to right, is the
first, second and their difference images. The second row, from
left to right, is the first image and the transformed of the second
image based on the estimated parameters using our method and
their difference.

Table 1: Klaver: The first row of each model is our method and
the second row is the manual method. The 1-6th columns are
parameters. The 7th is the energy value and the last is percentage
of moving pixels less than 5 pixels.

3D Euclidean parameters

pP1 P2 P3 Pa Ps Pe € ms
107t 107t 107t
0.13 -163 164 -59 -33 -0.1 19.6 0981
0.01 1.02 1.83 0.5 -3.3 0.0 246 0967
Projective without affine parameters

pP1 P2 p3 Pa Ps Pe € ms

107! 107% 10°°

1.000 -1.72 -23 -30 -2.04 061 19.6 0.981
1.000 -1.81 -1.3 33 1.36 0.05 246 0.967

Table 2: Apeldoorn: The first row of each model is our method
and the second row is the manual method. The 1-6th columns are
parameters. The 7th is the energy value and the last is percentage
of moving pixels less than 5 pixels.

3D Euclidean parameters
p1 D2 p3 b4 ps Ps € ms

1-' 1wt 107!

027 053 405 19 -14 -0.9 235 0975
-1.04 -0.05 4.18 0.7 1.5 -04 268 0972
Projective without affine parameters

p1 P2 p3 P4 ps Pe e ms
107! 107% 107°

1.001 -403 -23 -30 038 -031 233 0979
1.000 -4.18 -13 -33 -0.11 141 268 0.972
3D Euclidean parameters

P1 P2 Pp3 P4 ps Pe e ms
0t 107" 107t

-149  -0.16 2.10 03 0.7 -0.0  27.8 0.933
-1.15 028 205 14 -03 -02 358 0.874
Projective without affine parameters

P1 P2 Pp3 P4 ps Pe e ms
10! 10°° 107°

1.000 -2.11 -23 -30 -031 167 275 0.936

9999 -205 -13 -33 037 156 36.0 0.872

Table 3: lokseq: The first row of each model is our method and
the second row is the manual method. The 1-6th columns are
parameters. The 7th is the energy value and the last is percentage
of moving pixels less than 5 pixels.
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